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lutional neural networks are initially trained and used for
the image classification task. Using a transfer learning tech-
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compared to the latest results, while using a smaller dataset.
We achieved an accuracy of pathological speech detection of
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Abstrakt: Táto práca sa venuje skúmaniu využitia hlbokých
neurónových sietí pre rozponanie patologickej reči. An-
alyzuje existujúce riešenia a publikované výskumné články
a rozoberá ich. Skúma použité metódy, dáta a dosiahnuté
výsledky. Nadobudnuté vedomosti využíva pri návrhu
vlastných riešení, ktoré používajú najmodernejšie riešenia v
podobe konvolučných neurónových sietí. Tieto predtréno-
vané existujúce konvolučné neurónové siete, pôvodne určené
na klasifikáciu obrázkov, využíva prostredníctvom techniky
učenia prenosoma adaptuje ich na použitie pre rozponávanie
patologickej reči. Jednotlivé navrhnuté riešenia boli imple-
mentované a overené a ich výsledky analyzované medzi
sebou a vrámci porovnania s publikovanými článkami.
Najlepší dosiahnutý výsledok predstavuje zlepšenie o 2,5%
v porovnaní s najnovšími publikovanými výsledkami,
za použitia menšieho množstva dát a dosahuje presnosť
detekcie patologickej reči na úrovni 82%.
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Introduction

Artificial intelligence is everywhere. We may or may not notice it, but it helps us
perform our day-to-day tasks easier and better. It is implemented in our mobile
phones, computers and perhaps in the infrastructure of a city we live in. With the
rise of new powerful computer hardware, it became the number one toolbox for
starting a tech-startup. With an unconventional approach, it may help us figure
out problems that we had no idea how to solve them, sometimes simply because
we are unable to describe them to the computer in a general form.

When solving a problem using machine learning, we tackle it from a com-
pletely different perspective. Instead of describing the computer preciselywhat to
do and what to look for - which could be extremely hard and complicated - we let
the computer learn by itself. We feed it with a massive amount of data, examples
of inputs and outputs, and make use of powerful machine learning algorithms.
1 Deep learning, a more specialized field of machine learning, has proven to be
a powerful tool for tackling some of the hardest problems and now is one of the
fundamental parts behind modern AI development.

With the use of deep learning, we can explore several different areas. Some
problems, like speech to text conversion, language translation, and image recog-
nition, are being researched heavily, which led to significant progress and real-
world applications. Others, like the health segment, are still mostly in a state of
research.

We became interested in health because of several different reasons. Being able
to make some impact and contribute to something that could potentially increase
the quality of life for people is themost important one. Because the health segment
is vast and offers lots of different problems to tackle, it is necessary to have many
people doing the research, and many problems are still not very well solved.

1This is only one way of approaching a problem, called supervised learning.
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Introduction

In this thesis, we decided to focus on pathological voice research. It is an in-
teresting problem, as it allows us to work directly with a patient’s audio sam-
ples. Historically, there are methods with excellent precision but require an un-
derstanding of data. In order to work, they extract some metadata from the orig-
inal record, for example, harmonic-to-the-noise ratio (HRN) or Mel-frequency
cepstral coefficient (MFCC). A newmodern way of solving the same problem we
will try to explore is using deep neural network and let the computer extract ev-
erything, what contains any value for calculating the final result.

Our main goal is to build upon, replicate, and possibly improve the current
research in a field of pathological voice detection. We use available resources to
understand the challenges, approaches, and achieved results and use this knowl-
edge to form a new potential way of solving the same problems. After we design a
new approach, the next step will be to design and develop a neural network, so it
is possible to test the idea. Achieved results from each idea will then be evaluated
and compared to published papers.
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1 Pathological voice detection overview

The detection of pathological voice disorders is a complicated process. It requires
sophisticated equipment and a trained doctor to perform the diagnosis. People
with potential disease have to attend a unique diagnostic process at their local
clinic.

The classic process of detecting the pathological voice disorders used today is
expensive and time-consuming. Even with the required cost and time effort, the
outcome is highly dependent on the doctor’s skill and experience.

This hard dependency on medical specialists creates a demand that they al-
ways have to be a reasonable amount of skilled specialists for a particular region.
Otherwise, the waiting times would be too high, and the costs would increase
even more. Most probably, in that situation, not everyone would be able to attend
a diagnosis.

Since the cost of classical diagnostic methods used today is already high, not
everyone can afford to attend the examination process. Because of the cost in-
volved, there might be cases left without a medical diagnosis. Those patients
would lack proper treatment, therefore, putting their health and maybe even life
to the risk.

When it comes to voice disorders, it is crucial to get a proper diagnosis at the
early stages, as they might be an indicator of more severe problems. One of those
problems could potentially be larynx cancer.

Health issues caused by pathological disorders are severe, but they are only
one part of the patient’s complications. Voice disorders affect the larynx and its
ability to produce sound. Health issues may result in irregular vibrations of the
vocal folds [1]. Problems with vocal folds may impact the ability of an individual
to speak, which could have several consequences. One of them is most likely a
reduced quality of social life. People often tend to feel ashamed of their imperfec-
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Chapter 1. Pathological voice detection overview

tions and might have a problem starting a conversation with strangers that do not
have any knowledge about their health issues. This separation from society might
eventually result in depression or other psychological difficulties.

Based on the paragraph above, that presented complications and problems of
the pathological patients with the voice diseases, there is an inevitable and nec-
essary space for improvement in diagnosing the pathological voice diseases. We
want to decrease the time of the diagnostic process, reduce the overall costs, and
increase the percentage of diagnosed patients with proper treatment. The general
idea is to eliminate all the cons of traditional methods.

There has been an effort to create affordable, noninvasive methods that makes
use of available technology to perform the diagnosis successfully. This approach
also eliminates potential human error, making it reliable and reducing the need
for trained experts in the field. Doctors would have a better tool at their disposal
that assists them and enable them to dedicatemore time and effort to each patient.
Patients might also use the new approach for self-examination.

With the rise of the machine learning field, researchers from all over the world
come up with new approaches and methods very frequently. The central part of
the research focuses on improving existing methods and making computers be
able to solve problems that cannot be solved or are incredibly hard to solve, using
traditional algorithmization.

Another part of the research is more focused on making use of invented meth-
ods in real life, to solve real-world problems. One of the fields that are profiting
from the artificial intelligence (AI) boom is the health domain.

When it comes to pathological voice diagnosis, several methods were already
proposed and are under the research. We will take a look at them in the next
section.

1.1 Using Mel-Cepstrum Vectors with SVM

In Pathological VoiceClassificationUsingMel-CepstrumVectors and SupportVec-
tor Machine research paper [2] (PVC-1), researchers are presenting a supervised
classification model trained to classify pathological defects. They developed their
model using a dataset of voice samples, being able to classify the pathological de-
fects into three commonly identified vocal disorders: Neoplasm, Vocal Palsy, and
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Chapter 1. Pathological voice detection overview

Phonotrauma. The dataset used in their research consists of 50 healthy individu-
als and 150 subjects with a pathological voice disorder. They obtained the voice
samples for their experiments from a voice clinic in a tertiary hospital, Far Eastern
Memorial Hospital (FEMH).

They utilized theMel-frequency cepstral coefficients, calledMFCCand its tem-
poral derivatives calledMFCC deltas. Mentioned features were extracted directly
from the raw audio signals. The SVM classifier uses the extracted features as in-
puts. The number of computed MFCC coefficients was 15. The hyperparameters
of the SVM classifier were tuned using the SHAC algorithm [3]. The primary
purpose of a given model, presented in the paper, is to create a baseline for which
physicians can diagnose vocal disorders accurately and have a model that other
researchers can compare their results.

"Mel-frequency Cepstrum is a representation of a sound signal, based on the
linear cosine transform of a log power spectrum on a nonlinear mel scale fre-
quency" [4]. In a mel-frequency cepstrum, the frequency bands are uniformly
spaced on the mel scale. The MFCC deltas are computed as temporal derivatives
of theMFCC features. ComputingMFCC andMFCCdeltas serve as the extraction
of dynamic features of speech [5].

They used a set of Random Forest models trained on the training data to com-
pute the importance of the 45 dimension input vector. Only features above some
threshold (sampled from SHAC algorithm) were used for the training, as inputs
for Kernel Support Vector Machine with the Gaussian Radial Basis Function ker-
nel. Figure 1.1 summarizes the overall model and its components.

Because of the dataset size, they have decided to use the 5-fold cross-validation
process, instead of having a distinct test set.

The achieved specificity in classifying the binary output, whether the sample
is healthy or pathological, was 0.7823. When classifying a concrete disease, the
achieved accuracy was 59%.
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Chapter 1. Pathological voice detection overview

Figure 1.1: Proposed model pipeline, adopted from [2]

1.2 Classification Using Acoustic Features

In this next paper calledPathological VoiceClassificationBased on a SingleVowel’s
Acoustic Features [6] (PVC-2), authors describe the approach of classifyingpatho-
logical voice from a healthy voice, based upon 30 acoustic features derived from
a single sound of vowel /a/.

The idea behind their research is to examine an acoustic analysis and find out
which factors are affecting the human voice production mechanism. Using this
process can lead to the noninvasive diagnosis of diseases. Also, they are inves-
tigating the influence of the acoustic features on the accuracy of voice disorder
detection when reducing dimensions by the PCA algorithm.

In their research, they used a dataset collected by the Massachusetts Eye and
Ear Infirmary (MEEI). It includes several hundreds of voice recordings, belonging
to either healthy or pathological individuals. For this particular paper, authors
decided to use recordings of a single vowel tone /a/.

For experiments, they have used data from 216 subjects, from which 177 sub-
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Chapter 1. Pathological voice detection overview

jects were pathological, and 39 were healthy subjects. Each data point, from a
given subject, consists of 30 acoustic features, which are defined by the multi-
ple dimension voice program (MDVP). Examples of used features are Amplitude
Perturbation Quotient (%), Degree of Subharmonic components (%), Standard
Deviation of the Fundamental Frequency (Hz), and Average Pitch Period (msec).

To be able to classify pathological and healthy samples, the authors designed
a two-step process. First, they have made use of Principal Component Analysis
(PCA) algorithm to reduce the dimensionality of used data samples from the orig-
inal 30 to a specified value. (In the original paper, they present a table with results
for multiple dimensions, from 1 to 30.)

"The PCA transform is used to reduce dimensionality by rotating the dataset
in a way such that the rotated features are statistically uncorrelated" [7]. Data
from the PCA, with reduced dimensionality, are then used with the Least-squares
support vector machine (LS-SVM) classifier with the RBF kernel function.

To verify themodel’s performance, they have used 5-fold cross-validation. The
K-fold validation helped to acquire the most accurate results, as the data set was
too small to have a separate test data set.

The achieved classification accuracywas 98,1%, with sensitivity and specificity
0.925 and 0.994, respectively.

The achieved results are excellent compared to other papers. However, there
has been an evidence [8] and criticism against using MEEI dataset for binary
pathological voice classification. As the authors point out, the pathological and
healthy voice recordings were recorded in two different environments. Thus, it is
hard to distinguish whether the classifier is correctly picking the voice features,
or the environment difference is essential for the classification outputs.

1.3 Using Fusion of Scores for Pathology Detection

Another paperVoice PathologyDetection on the SaarbruckenVoiceDatabasewith
Calibration and Fusion of Scores Using MultiFocal Toolkit [9] (PVC-3) uses the
Gaussian mixture model-based classifier on multiple datasets.

For their experiments, they decided to use and compare two different datasets.
The first one is the Massachusetts Eye and Ear Infirmary (MEEI) database. They
have used 226 recordings, corresponding to the vowel /ah/ sustained. From the
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Chapter 1. Pathological voice detection overview

picked subset, 173 fileswere representing pathological patients, and 53 recordings
belong to healthy subjects. For a seconddataset, they have chosen the Saarbrucken
Voice Database (SVD), recorded by the Institute of Phonetics of Saarland Univer-
sity. They found this dataset interesting as at the time of writing their paper, SVD
was a new and unexplored database. The SVD database contains voice record-
ings frommore than 2000 persons, with multiple data points for each subject. For
their experiments, they have decided to use only files with sustained vowels and
subjects that are older than 18 years. In total, the subset they use contains 1970
recording sessions, fromwhich 1320 were belonging to pathological patients, and
650 recordings come from healthy subjects.

From the used voice recordings, they have extracted multiple features. Acous-
tic features characterize the frequency content of the signal and are represented
by the MFCC family of parameters. Noise-related features focus on analyzing
howmuch noise does the signal contains. They are represented by the Harmonic-
to-Noise Ratio (HNR), Normalized Noise Energy (NNE), and Glottal-to-Noise
Excitation Ratio (GNE).

The extracted features from the audio signals are then used to train a genera-
tive GMM model [10] for each predicting class. The model is a generalization of
the Gaussian model, and it helps to generate much more complicated likelihood
functions.

For training the GMM model, they have used the expectation-maximization
(EM) algorithm [11], starting with K random Gaussians and executing 10 algo-
rithm iterations. After that, they calculated the log-likelihood ratio between like-
lihoods for pathological and regular classes for each test file. The decision of the
final predicted class utilized the calculated log-likelihood ratio.

For calibration of calibration-sensitivemetrics, they haveusedMultiFocal Toolkit
developed in Matlab and designed for calibrating and fusing scores of a language
recognition tasks [12]. The authors decided that based on the interest in hard de-
cisions made by the classifier. Examples of calibration-sensitive metrics are cor-
rect classification rate (CCR), error rate (ER), sensitivity (S), and specificity (E).
An additional metrics authors considered necessary were detection cost function
(DCF), also called empirical Bayes risk and its minimum value for the selected
operating point (minDCF). Authors used the MultiFocal Toolkit for score cali-
bration and to fuse scorings coming from different recognizers to obtain a better
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Chapter 1. Pathological voice detection overview

recognizer. They also describe that the idea behind calibration is that scores are
converted in such a way that the Bayes decision threshold can be used for making
the best possible decision.

Executed experiments using MEEI database were using 30 folds of data, fol-
lowing a process from the [13]. For each test fold, the remaining 29 folds were
used for training. They have trained GMMs with three components, but instead
of following [11], they have decided to group the same speakers within the same
fold. It was done as a prevention from the model recognizing the already seen
subject. For the uncalibrated model, they achieved the correct classification rate
(CCR) of 92,3%. With calibration in the process, the CCR increased to 94,8%.

Experiments executed using the SVD dataset were using 12 subsets to validate
the impact of each vowel and all intonations. 30-fold strategy and three compo-
nents in the GMM stayed the same as to match the previous experiments. On the
other hand, the grouping of the same subject into the same subset is not guaran-
teed. The possibility of having the same subject in test and validation sets could
potentially mean that the model might learn to recognize the speaker and do the
classification based on that information instead of strictly relying on provided
data. This fact can impact the results, making the overall performance results
more optimistic than they are.

When comparing the performance for each vowel, they have found that the
recognition rate is slightly better for /a/ vowel, comparing to other vowels. The
best achieved CCR was for the /a/ vowel, natural intonation with the result of
67%. Next, they have found that the partial fusion for each vowel, with all four in-
tonations, helped with the classification task. The best results were also achieved
for /a/ vowel, with the CCR being 71,8%.

At last, the final global fusion with all vowels and intonations were verified
and tested. They have found a significant increase in performance. The achieved
CCR results were 79,4%.

1.4 Pathology Detection Using Deep Learning

A scientific paper titledADeep LearningMethod for Pathological Voice Detection
using Convolutional Deep Belief Network [1] (PVC-4), describes an approach,
where authors used a combination of Convolutional Deep Belief Network and
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Chapter 1. Pathological voice detection overview

Convolutional Neural Network (CNN) to classify the pathological and normal
healthy voices.

For their experiments, they have chosen to use the SaarbrueckenVoiceDatabase
(SVD)dataset. During their research, they havedeveloped adeep learningmethod
to discriminate pathological voice and healthy voice automatically. This approach
was not yet widespread, and not enough research was focused on it, as DNNs of-
ter require to learn from a massive amount of data.

They have decided to use sustained vowel /a/ samples at a neutral intonation
pitch. The pathologies to represent the pathological samples were limited to or-
ganic dysphonia, caused by structural changes in the vocal cord. Diseases that
were included are laryngitis, leukoplakia, Reinke’s edema, recurrent laryngeal
nerve paralysis, vocal fold carcinoma, and vocal fold polyps. The used subset
consisted of 482 healthy subjects and 482 pathological patients. The data were
divided into a training set and testing set, containing 75% and 25%, respectively.

During the preprocessing stage, at first, they resampled the original record-
ings to 25kHz. This was done to reduce the amount of data in the feature map,
which should eventually speed up the training process. After resampling, they
utilized the Short-time Fourier transform (STFT) process to transform the time-
domain signal into a spectral-domain signal. For that, each file was divided into
10ms Hamming window segments, with a 50% overlap. At last, they reshaped
the spectrogram to 60x155 points to remove part of the data without information.

The classifier then uses the preprocessed data as an input. The classifier is a
Convolutional Neural Network (CNN), and it consists of 10 hidden layers. To
reduce the resolution in convolutional processing layers and to reduce the com-
putational complexity, they utilized max-pooling layers. After convolutional lay-
ers, they used a Dense, fully-connected layer, to apply the final classification. To
avoid overfitting problems and to improve generalization, they applied the L2-
regularization.

To increase the robustness of a trained network, they decided to use genera-
tive models. Generative models should help to improve the overall deep learning
network performance on small datasets and to eliminate, or at least reduce, the
over-fitting problems. The typical generative model used is the Convolutional
Restricted Boltzmann Machine (CRBM). Stacks of CRBM constitutes a Convolu-
tional Deep Belief Network (CDBN). After pre-training the weights in each layer
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Chapter 1. Pathological voice detection overview

of the classifier, they apply the back-propagation algorithm for fine-tuning the
weights to achieve better classification results. The overall network diagram is
represented in figure 1.2.

Figure 1.2: Block diagram of proposed pathological voice detection system,
adopted from [1]

The achieved accuracy of a pure CNN network was 66% for the validation
dataset and 77% for the testing dataset. On the other hand, when using a combi-
nation of CNN and CDBN networks, the accuracy of the testing dataset decreased
to 71%, while the accuracy on the validation dataset increased to 68%. A decrease
of the accuracy on the test dataset indicates better generalization and increased ro-
bustness, which decreased the overall network’s accuracy on a previously unseen
data.
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1.5 Summary

In this chapter, we have studied several different methods used for pathological
voice detection problem. Each method was different and presented a unique ap-
proach compared to the others.

We have seen that the Saarbruecken Voice Database (SVD) presents a chal-
lenge for the detection of pathological speech, compared to other datasets. The
achieved results using SVDwere around 75%, with the best accuracy being 79,5%.

From the analyzed papers, we can extract some useful findings for our future
work. As [9] presented, using the bigger dataset (i.e., multiple vowels) and a fu-
sion of multiple models increases the overall performance. [1], on the other hand,
showed that the Convolutional Neural Networks (CNNs) could be used for the
detection of pathological speech. The usage of CNNs opens up new possibilities
for research.

A table 1.1 summarizes results achieved by the mentioned papers.

Dataset Approach used Results
PVC-1 FEMH MFCC features, SHMAC + SVM TNR - 0,807
PVC-2 MEEI Acoustic features + PCA, LS-SVM ACC - 98,1%
PVC-3 MEEI, SVD Acoustic and noise related features,

GMM
MEEI ACC - 94,8%
SVD ACC - 79,4%

PVC-4 SVD STFT features, CDBN + CNN ACC - 77%

Table 1.1: Summary of methods and results presented by analyzed papers
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2 Fundamentals of neural networks

Artificial intelligence (AI) is a form of intelligence possessed by the machines.
Z. Voulgaris and Y. E. Bulut, define in their book [14] the AI as "a set of al-

gorithms that make use of information – mainly in the form of data – to make
decisions and carry out tasks, much like a human would." Based on the defini-
tion, we may say that AI is every single computer program that contains logic to
solve a task that is usually performed by humans. Rules or instructions to perform
a specific job might be defined (hardcoded) by the programmer writing the pro-
gram in the form of computer code (symbolic AI), or they might be learned from
examples, using some sophisticated algorithms. The most well-known cases that
everyone can imagine could be computer programs playing chess. More modern
examples include chatbots, advanced bot implementations in games, or applica-
tions that create video recommendations based on the viewer’s watchlist history.

The connection between artificial intelligence and humans is so deep that Alan
Turing came up with the test [15] of a machine’s ability to demonstrate intelligent
behavior indistinguishable from the human.

Machine learning (ML) is a subset of artificial intelligence. It uses several dif-
ferent algorithms and statistical models to learn how to perform the given task,
without explicitly knowing the exact instructions. The actual knowledge is ex-
tracted from the data provided during the training process. Multiple different
types of machine learning algorithms differ in their approach to solving the prob-
lem. For example, most used supervised learning is a process of learning how to
map the input data to the expected results.

On the other hand, clustering or dimensionality reduction algorithms are from
the group of unsupervised algorithms. They analyze the data and output of the
computed results. They have proven to be very useful, for example, during the
exploratory data analysis process.
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Chapter 2. Fundamentals of neural networks

According to the F. Chollet [16], "machine learning opened the door to a new
programming paradigm, where humans input data as well as the answers ex-
pected from the data, and the program learns the rules."

Neural networks (NN) are a specific subset of the machine learning field. In
general, J. J. Hopfield [17] defines neural networks as "networks or circuits of neu-
rons composed of artificial neurons or nodes." To improve the clarity, we differ-
entiate between biological neural networks made up of biological neurons and
artificial neural networks that we build and use to solve problems.

2.1 Building blocks of neural networks

The fundamental block of neural networks is the artificial neuron. Artificial neu-
rons are mathematical functions that receive one or more inputs and calculate
a sum to produce a single output. The calculation is often referred to as a lin-
ear combination. Neurons are a generalization of perceptrons, introduced by F.
Rosenblatt [18]. During the computation, each input is multiplied with a belong-
ing weight. Weights can be changed, and they represent the neuron’s ability to
be adapted by modifying weight values. Internal diagram of artificial neuron is
displayed in diagram 2.1.

Figure 2.1: Artificial neuron

The function of the artificial neuron can be mathematically described as:

y = φ

(
n∑

i=1

xi ∗ wi

)
The activation function adds a non-linearity to the computation of the result

y. The most popular activation functions are rectified linear unit (RELU) and
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tangens hyperbolicus (tanh), which graphs are illustrated in diagram 2.2.

Figure 2.2: RELU and tanh activation functions

The neural network combines neurons to form a structure (hence the name
network), that can adapt and model sophisticated data scenarios. It consists of
an input layer, one or more hidden layers, and one output layer. The network
structure build-up from the input layer with four inputs, a single hidden layer
with seven nodes and an output layer with two outputs, is illustrated in diagram
2.3.

There are two groups of artificial neural networks, feed-forward, and recurrent
neural networks. Feedforward neural networks, also called as multilayer percep-
trons (MLP), combine neurons in such a way that neurons in any layers are only
connected to neurons in the next layer, which means that they cannot form any
cycle. Recurrent neural networks, on the other hand, do contain cycles in their
internal structure, and their architecture can be much more complicated. Exam-
ples of recurrent neural networks are Long short-term memory (LSTM) or Gated
recurrent units (GRU).
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Figure 2.3: Simple neural network with 1 hidden layer

2.2 How do neural networks learn?

As F. Chollet defined in his book [16], "A machine-learning model transforms its
input data into meaningful outputs, a process that is "learned" from exposure to
known examples of inputs and outputs." However, how exactly is this learning
process achieved?

The algorithm learns by continually adjusting the weights of corresponding
neuron connections within the neural network based on a feedback signal. It is
done repeatedly by exposing the network to training data over and over, which is
a process called training loop. A single exposure to training data is called a batch.
After each batch, the training algorithm computes the achieved error rate, defined
to precisely fit the solving task. The error rate is a difference between predicted
values and actual values, and it is computed using loss function. The goal of the
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learning process is to learn how to map the network’s inputs to correct targets by
minimizing the loss between predicted results and actual results. Because of that,
the correct definition of the error metric is crucial for achieving wanted progress.

Once the model knows the error rate, weights have to be adjusted to reduce
the error and provide better predictions. Adjusting weights is based on a feature,
that all operations in the neural network are differentiable, which allows us to
compute the gradient (a derivative of a tensor operation) of the loss with regard
to network coefficients.

In an ideal world, we can find the best weight values by solving

gradient(f)(W ) = 0

function [16]. Solving this equation is, however impossible in real-world scenarios
as modern networks have too many parameters.

In allmodern implementations, adjustingweights is achieved using the combi-
nation of backpropagation [19] and gradient descent algorithms. The backpropa-
gation algorithm computes the gradient of the loss function, one layer at the time
starting from the end, with respect to all weights using the chain rule of calcu-
lus. Gradient descent algorithm is an algorithm for finding a local minimum of a
differentiable function. In practice, more sophisticated versions of stochastic gra-
dient descent algorithm are used, that adjust the weights not only by computed
gradient but also based on previous adjustments. Taking into account previous
adjustments maintains momentum and helps to avoid the local minimum trap
problem.

2.3 Deep learning

Deep learning is a subfield of the machine learning field. It focuses on building
neural networks with multiple hidden networks, using successive layers of data
representation. Modern deep learning models usually contain between tens and
hundreds of hidden layers. It matches an idea of how we, humans, usually make
use of the information by combining abstract knowledge to form concrete knowl-
edge. Earlier layers are supposed to extract an abstract, general knowledge and
which should be reused by the following layer, gradually until we have a final
concrete prediction. The count of layers in a deep learning model is referred to as
the depth of a model.
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An example of a deep neural network is illustrated in figure 2.4.

Figure 2.4: Deep neural network with 4 hidden layers

Deep learning networks became very popular in the past few years. They com-
pletely replaced all classical approaches for tasks like computer vision and speech
recognition. The performance they provide is unmatched for many types of prob-
lems. Despite the performance, they also eliminated feature engineering, a task
that is crucial yet often complicated or tricky. By design, they do not require mas-
sive data preprocessing as they can learn the essential features right from the "raw"
data, therefore automate this process entirely. This advantage leads to more flex-
ible, simplified machine learning pipelines.

Deep learningmodels gain their advantage from the sophisticated yet straight-
forward learning process. They are not only stacked layers. Instead, they are
multiple layers that are used and adjusted together to form a robust model. As
F. Chollet stated [16], "there are two essential characteristics of how deep learn-
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ing learns from data: the incremental, layer-by-layer way in which increasingly
complex representations are developed, and the fact that these intermediate in-
cremental representations are learned jointly, each layer being updated to follow
both the representational needs of the layer above and the needs of the layer be-
low."

2.3.1 Convolutional neural networks

Convolutional neural networks (CNN) are a go-to algorithm for all modern com-
puter vision problems. They are a specific version of deep neural networks. Con-
volutional neural networks were first used in 1990 by the group of researchers
around Yann LeCun when they used the network for handwritten digit recogni-
tion problem [20].

CNNsmake use of hierarchical patterns presented within the data. Each layer
is building upon more abstract patterns extracted by the previous layer, moving
towards a final prediction at the end. In the last layer, CNN can identify the
presence of a complicated pattern and use this information to form a final pre-
diction. Convolutional neural networks proved to be useful for tasks, including
image recognition, image classification, and medical image analysis.

The name, convolutional neural network, is based upon a usage of a mathe-
matical operation, called convolution, which is highly used in image processing
algorithms. Convolution operation translates an input feature map to an output
feature map. An input of the first convolution is an image with three dimensions:
height, width, and depth, representing the number of channels in the image. RGB
images have three channels, whereas monochromatic images have only one. A
depth of the output of a convolution operation is dependent on a number of used
filters.

The filter is a core block of a convolution. It is a matrix (for example, of size
5x5x3 for an image with three channels), and it encodes a specific aspect of the
input data. During the forward pass of the convolution layer, the filter convolves
(slides) across the width and the height of the input feature map. For each input
at a position of a filter and filter itself, the dot product is computed. An example
of the computation is visualized in figure 2.5.

For each convolution layer, there are multiple filters learned, and their count is
a parameter of a given layer. The goal of the convolution layer is to learn the right
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Figure 2.5: Convolution operation

filters that provide the best output for the next layer. Examples of encoded infor-
mation of a filter might be detecting a circle, detecting the presence of a human
face, or detecting the presence of an elephant’s ear. Filters are exploiting a feature
called local connectivity, which uses the idea that it is more practical to connect
neurons to a local region of the input volume, rather than trying to process the
input as a whole.

Another common techniqueusedwithin convolutional neural networks is pool-
ing operation. The pooling operation is represented by a single two-dimensional
matrix, a filter, which divides the input feature map into the small parts of a size
of a filter and operates on them, as presented in figure 2.6. Pooling operates inde-
pendently on each depth slice of the input feature map.

Figure 2.6: Max pooling operation with 2x2 filter

Themost common types of pooling used are average pooling andmax pooling.
A max-pooling filter of size 2x2 takes four values as an input and outputs a single
value, the maximum of input values, therefore, downsizing the input it operates
on. Because of the downsizing characteristic, the pooling operation is usually
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inserted in-between successive convolutional layers. It reduces the size of the data
representation, passed between convolutional layers. Reducing the size of passed
information is useful for reducing the number of parameters in a network, which
directly helps to prevent the overfitting problem.

The most significant advantage of CNN architecture, compare to regular neu-
ral networks, is their ability to scale-up to more significant inputs, which is essen-
tial when dealing with images.

Convolutional neural networks are very popular for their versatility and per-
formance and are being studded heavily [21]. Currently, there are many well-
known architectures of CNNs. One of the most popular ones are VGG16 [22],
ResNet [23], DenseNet [24] and NasNet [25].

2.4 Transfer learning

Transfer learning is a technique, used in machine learning than allows us to reuse
acquired knowledge gained during learning to solve one problem and apply it
to a different, somehow related problem. An example of reusing the knowledge
might be using a network trained for animal species recognition to be also reused
for humans.

The process of reusing network to another problem is usually referred to as
a transfer between domains. Domains, in this case, represent the scope of a par-
ticular problem, either the source (original) problem or the destination (new)
problem. In order to make this transfer as smooth and effective as possible, we
go through the process of adaptation. The more related are the source and the
destination problems, the less adaptation (if any) is needed.

There are multiple ways we can do the transfer learning, using deep learning
networks. The simplest and most straightforward process uses the existing pre-
trained neural network with weights as a base. In order to be able to extract more
abstract information, we remove to last layers (usually dense, fully connected lay-
ers, that are responsible for final classification) and attach our own, custom clas-
sifier on top of the base network. The individual layers of the base network could
be either frozen, meaning that weights will stay the same, or not, allowing them
to adapt better to a destination problem.

The transfer learning technique proved itself to be useful in several different
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problems. It helps to reduce the overall training time, buildmore robust networks,
and train powerful networks with a small dataset for destination problem.

There are multiple ways of doing transfer learning within a speech processing
field. In general, all techniques are based on an idea, that the features learned by
deep neural network models are abstract at low layers, therefore language/gen-
der/person independent. A cross-lingual and multilingual transfer uses patterns
shared across languages to deliver better models and improve statistical strength
in multilingual conditions [26]. A speaker adaptation process focuses on adapt-
ing a general model to a specific speaker. A speaker adaptation process might
be beneficial for personalized experiences, such as for speech understanding in
voice assistants. Another interesting approach, called a model transfer, exploits
the knowledge of the so-called teacher model and uses it to guide the training of
the child model.

2.5 Evaluation metrics for binary prediction

When experimenting with machine learning models, we need to have the ability
to compare the performance of the two models. There are several different ways
of doing that. The most two used ones are accuracy and loss.

The accuracy metric is used to measure the algorithm’s performance in an
interpretable way by measuring how accurate the model’s predictions are com-
pared to the referential values. The loss, on the other hand, measures how well
themodel is doing. It is computed as a sum of errorsmade and is used to optimize
a trained machine learning algorithm.

Often, we are dealing with the binary prediction models, when the answer
is in the form of boolean. Yes or no, black or white, cat or dog, or in a case of
pathological voice detection, healthy or pathological. For binary predictions, the
very popular method of representing results and evaluating model performance
is a confusion matrix.

A confusion matrix is a two by two matrix, as shown in the table XY. The or-
ganization of the confusion matrix allows us to see the model’s performance and
be able to sense how does it behave.

Rows are representing the predicted classes, i.e., the output of our model.
Columns, on the other hand, represent the actual classes taken from our refer-
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ence data.
There are many derivations we can calculate from the confusion matrix. How-

ever, the most commonly used ones are accuracy (ACC), sensitivity (true positive
rate, TPR) and specificity (true negative rate - TNR). They are calculated as fol-
lows:

ACC =
TP + TN

TP + TN + FP + FN

TPR =
TP

TP + FN

TNR =
TN

TN + FP

Using accuracy, sensitivity, and specificity, we can tune our finalmodel accord-
ing to our needs. Sensitivity, for example, is beneficial when we need to identify
all positive samples, while it is crucial for avoiding false negatives [7]. An exam-
ple of such a task would be classifying cancer when it is safer to classify as sick
event healthy patients, rather than not classifying patients with the disease [7].
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3 Processing audio recordings

The way we store audio-recording affects some essential characteristics and fea-
tures. We can store audio in lossless formats like FLAC (Free Lossless Audio
Codec), which compresses raw audio-data without losing any information and
quality or use MP3 format with the lossy but storage-efficient compression algo-
rithm.

Whenworkingwith audio-data as sourcematerial for some follow-up analysis
and examination, we want to work with raw audio data captured directly by our
microphone. In raw data, we can search for patterns, characteristics, and anoma-
lies, that will give us a better understanding of recorded audio.

The most commonly used audio-format for that purpose is WAV (Waveform
Audio File Format, sometimes called wave files). Wave files store raw uncom-
pressed audio using the linear pulse-codemodulation format (LPCM). Originally
designed and developed by Microsoft and IBM, wave files became de facto stan-
dard in the industry. Because of their popularity, they are very well supported
by audio editing software designed for amateurs and professionals. They are also
lots of open source libraries for all popular programming languages that equip
developers with tooling to interact with wave files directly. Based on the reasons
above, wave files are prevalent among audiophiles, musicians, and researchers
working with audio data.

3.1 Visualizing audio data

There aremultiple ways of visualizing audio data, but themost common are oscil-
lograms and spectrograms. Options on varieties of those twomethods are infinite,
and the only limitation is our imagination.

Oscillograms present waveforms and amplitude of the audio signal over time.
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Figure 3.1 shows an example of the /a/ vowel sample. With just basic understand-
ing, we can see that it is a continuous signal of sound and that the amplitude is
decreasing over time as the patient is losing their breath.

Figure 3.1: Oscillogram of the pathological sample of /a/ vowel

On the other hand, figure 3.2 contains the spoken phrase "Guten Morgen".
Compared to the previous oscillogram example, we see that the signal is choppy
and looks completely different. That is caused by the patient going through each
letter of the phrase. Further analysis would reveal some interesting information
like letter recognition, subject’s gender classification, and more.

Oscillograms can help us understand audio datawe areworkingwith fromone
side. Having another perspective is always a good idea, especially when doing
research. Sometimes, we do not care about amplitudes, but frequencies in a given
sample.

Spectrograms help us visualize the frequency of the sound over time. Spec-
trograms preserve the amplitude (the energy presented in each frequency) and
represent it as the intensity of the color. A brighter color represents more energy.

Figures 3.3 and 3.4 contain spectrograms of previously mentioned audio sam-
ples. As you can see, a lot more data is present in them as the information is
encoded in three dimensions.
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Figure 3.2: Oscillogram of the healthy sample of "Guten Morgen" phrase

Figure 3.3: Spectrogram of the pathological sample of /a/ vowel
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Figure 3.4: Spectrogram of the healthy sample of "Guten Morgen" phrase

27



Chapter 3. Processing audio recordings

3.2 Acoustic analysis

Audio files contain information about the recorded audio signal. When working
with speech or voice recordings, we are interested in multiple voice specific fea-
tures thatwe can extract from a recorded signal. The process of extracting features
out of the voice signal is called acoustic analysis. The main advantage of perform-
ing acoustic analysis is that it is a non-invasive tool and provides objective diag-
nosis of a voice signal [27]. Based on the nature of extracted features, they can
belong to either the acoustic features group or noise-related features group.

The measures done as a part of acoustic analysis, when proven reliable and
reproducible, provide a means of following changes in the voice over time or be-
tween subjects [27]. There are multiple acoustic measurements, that can be com-
puted for any voice signal and are a foundation of acoustics. The most commonly
used are Fundamental Frequency, Jitter, Intensity, Shimmer, and Signal-to-Noise
Ration.

"Fundamental Frequency is an acoustic measure that directly reflects the rate
of vocal fold vibration" [27]. It varies between the population, and it is influenced
by the age and sex of a speaker [28]. "Vocal Fundamental Frequency is reflec-
tive of the biomechanical characteristics of the vocal folds as they interact with
glottal airflow" [27]. Speakers may also be able to adjust their Fundamental Fre-
quency based on the situation. The ability to do it "gives information regarding
the mechanical adequacy of the laryngeal structures, and about the precision of
laryngeal control" [29].

"Jitter or frequency perturbation is defined as small, cycle-to-cycle changes of
the period that occur during phonation which is not accounted for by voluntary
changes in frequency" [27]. Jitter is a useful feature that can be indirectly used
in pathological voice classification as healthy voices should have little jitter. In
contrast, voices with the presence of hoarseness or breathiness that can be an in-
dication of voice pathology are expected to have higher degrees of jitter [28].

"Intensity is defined as power per unit area. Vocal intensity is dependent on the
interaction of subglottal pressure, biomechanics, and aerodynamics at the level of
the vocal fold as well as the status of the vocal tract" [27] [30].

"Shimmer measures small, cycle-to-cycle changes of amplitude which occur
during phonation and quantify short-term amplitude instability" [27].
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"Signal-to-Noise Ratio is the ratio of the total energy of a voice signal to the
energy of the aperiodic component of the voice signal" [27] [29].

3.2.1 Acoustic features

Acoustic features characterize the frequency content of a signal [9]. They are
represented by the MFCC family of parameters and are widely used for speech
processing and voice analysis tasks. They are extracted using a frequency analy-
sis process that analyzes the audio signal based on the human perception of the
sound. For pathological voice classification tasks, those features are important
as they are based on the fact that an experienced medical specialist can detect a
presence of a voice disorder by listening to the signal or hearing out the patient
[31].

3.2.2 Noise related features

Noise related features are, as the name suggests, focused on measuring the signal
quality or the quantity of presented noise [9]. The utilization of noise-related
features for pathology classification tasks is based on the assumption that the
pathological voice signals contain in general more noise compared to the healthy
recordings. Themost popular noise-related features are Harmonic-to-Noise Ratio
(HNR), Normalized Noise Energy (NNE), and Glottal-to-Noise Excitation Ratio
(GNE).

Harmonic-to-NoiseRatio objectivelymeasures the perceptual feeling of hoarse-
ness presented in a voice [32] [9]. Said, it can also be defined as a measurement
of voice pureness [33]. It is based on calculating the ratio of the energy of the
harmonics related to the noise energy present in the voice [27].

"Normalized Noise Energy is a measurement of the noise present in the voice
respect to the total energy" [9] [34]. It has proven to be useful for detecting glottic
cancer, recurrent nerve paralysis, and vocal cord disease nodules [34].

"Glottal-to-Noise Excitation Ratio parameter compares the amount of signal
due to vocal folds vibration with the amount of signal due to noise produced by
air turbulences produced during phonation" [9] [35]. "GNE is based on the corre-
lation between Hilbert envelopes of different frequency channels extracted from
the inverse filtering of the speech signal" [35]. GNE can often be an indication of
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a breathiness presence in the voice signal.
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4 Detection of pathological speech

When designing a solution, it is fundamental to build on top of the existing re-
search. The latest machine learning trends focus on designing multi-layer deep
learning networks, with minimized data preprocessing algorithms. The general
idea is to let the network decide what is essential for it and what data pieces con-
tain the real value.

We started with the idea that we can visualize voice recordings and represent
them as images. Therefore, we have an opportunity to treat themnot only as audio
files but also as pictures.

When it comes to pictures, the latest machine learning research is focusing on
this direction. Image recognition and object detection, just to name a few, are all
used as a fundamental problem for ideas like self-driving cars.

When working with images, the latest machine learning trends focus on the
development and usage of Convolutional Neural Networks [36]. They showed an
ability to learn abstract things and patterns and use that information for detecting
more complicated objects within the given picture. Most of state of the artmodern
neural networks are using Convolutional Neural Networks inside their internal
architecture.

We have decided to reuse the power of CNNs and build our classifier on top of
them. The technique we used is called transfer learning. It is a process that allows
us to build sophisticated networks with limited data and resources.

4.1 Data

In the following experiments, we used the Saarbrucken Voice Database[37] as our
source dataset. It is a collection of voice recordings frommore than 2000 persons,
with several different samples for each subject. They are recordings of /i/, /a/ and
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/u/ vowels in ordinary, lower, higher and rising-falling pitch and "GutenMorgen,
wie geht es Ihnen?" sentence. It can be accessed by aweb interface, which provides
users with an ability to query the database for needed data. For example, we can
filter by the subject’s age, gender or pathologies, and disorders.

In our experiments, we have used both a complete and a reduced dataset.
The complete dataset consists of many pathologies and subjects. It is useful for
experimental work and analysis. The reduced dataset consists of pathologies
that are all organic dysphonia, which is caused by structural changes in the vo-
cal cord. The pathologies considered as organic dysphonia are laryngitis, leuko-
plakia, Reinke’s edema, recurrent laryngeal nerve paralysis, vocal fold carcinoma,
vocal fold polyps. All described experiments are using reduced dataset as we are
mostly interested in diseases caused by injuries to the vocal folds, or near them.
This decision limits the data, which reduces the overall training time and simpli-
fies the overall task, as the neural network model can focus its understanding to a
reduced pathologies list. By using reduced datasets, we are also able to compare
ourselves with the papers which use the same subset, for example, [1]. We choose
an equal number of healthy subjects randomly to balance the dataset.

The complete dataset consists of 677 healthy subjects and 1354 pathological
subjects. The reduced dataset consists of 506 pathological subjects.

Before each test, we filter out samples that are very short in length compared to
the others. We also tried to fill the void with some default values, but we did not
see any improvement. To maintain a robust dataset, we also balance the data in
both groups. The balancing process is done by randomly removing subjects from
the group that contains more samples. This process ensures that the network will
not be biased towards a larger group. On the other hand, we have to sacrifice
potentially valuable data.

During all of our experiments, we split data into three parts. Training data are
60%, validation data are 20%, and test data are 20%. We use stratified splits that
will ensure that the proportion of values in produced groups will stay consistent
according to provided data.
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4.2 Methods/tools used

To verify the ideas presented in published research papers and newly designed
approaches, we write computer programs. Within those programs, we visualize
the data, do a data preprocessing, model neural networks, train them, and evalu-
ate them using achieved results.

We write all of our computer programs in the Python programming language.
Python [38] is a general-purpose, high-level programming language. Together
with R, it has become a standard programming language used by the machine
learning community, as it allows researchers andprogrammers to implement ideas
clearly and understandably. Because of its popularity, there are several different
machine learning libraries that we make use of to our advantage.

For data analysis and traditional machine learningmodels, we use Scikit-learn
(sklearn) [39]. We also make use of Keras [40]. Keras is a high-level neural net-
work library that enables us to build neural network models quickly and easily,
making it an excellent tool for fast prototyping ideas. As a machine learning,
tensor-based, low-level "backend" library used by Keras, we decided to go with
TensorFlow [41].

Most computations during the data preprocessing or data analysis stage are
using the NumPy [42] library. For audio analysis and spectrograms conversion,
we utilized LibROSA [43] package. All visualizations are created using the Mat-
plotlib [44] library.

For the development and execution of our written programs, we use Jupyter
Notebooks. [45]. Jupyter Notebook is a top-rated, website based development
tool that provides the ability to write clear, descriptive programs with built-in
documentation and visualization.

All experiments were run on the computer with the AMDRyzen Threadripper
1900X 8-Core CPU, 64 GB of RAM, and two NVIDIA GeForce RTX 2080 graphics
cards.

4.3 CNN single vowel approach

In our initial approach, we have decided to try a straightforward and simple solu-
tion. As a base network for transfer learning, we’ve decided to use the VGG16 [22]
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network which internal architecture is presented in figure 4.1. The network was
pre-trained on the ImageNet [46] dataset, and its original purpose is to classify
objects from pictures.

Figure 4.1: VGG16 internal architecture

During the process of transfer learning, we take the network and freeze all its
layers, so they do not adjust to our newdata. It is also a performance improvement
as we do not need to add its internal layers into backpropagation calculation.

The VGG16 neural network expects input in the form of raw image pixel data
in RGB form. That means that it expects three channels: red, green, and blue.
The data that we get, when we convert our wav audio file sample to the spectro-
gram form, have only one channel. To ensure compatibility, we have decided to
duplicate our spectrogram three times, once for each expected channel. This ac-
tion should not have any impact on the VGG16’s data processing ability, but it will
allow us to reuse the robust, already pretrained network.

Since we are not interested in predicting objects classifications from pictures,
we remove dense layers from the base network. By removing dense layers, we can
access more "raw" data, which allows us to build our classifier on top of them.

The classifier we will put on top of the CGG16 network will be trained on our
data so that it can learn and achieve the desired predictions on the target problem.
Its internal structure needs to be designed during a process of trial and error, as
there is no "proper" way to do it. What works for one problemmay not necessarily
work for others.

At least we can reuse the knowledge from the machine learning community.
We have decided to use dense layers and experiment with the count of hidden lay-
ers and neurons in them. We also tried some generalization techniques to observe
their impact on the network’s performance.

We have started with a basic dense layer-based classifier with only one hidden
layer and adjusted it based on the results and observed behavior.
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We have found two classifiers architectures whose results were promising.

4.3.1 Setting a base with single layer classifier

Starting with a single layer classifier allowed us to set a base result for all future
experiments. Because the network contained only a small portion of trainable pa-
rameters, it did not have a problem with overfitting, and we were able to observe,
whether this approach can generalize to provided data.

Diagram 4.2 represents an architecture with one hidden layer of 32 neurons.
The input for it is an output from the VGG16 network, which we first flattened,
so it is only one-dimensional. Between the hidden layer and an output layer is a
dropout layer with a 0.5 coefficient, which means that the dropout layer will set
50% of each information detail to zero during each training iteration. We found
that it improves the network’s ability to learn and generalize significantly. Without
it, the network had trouble making sense of the data, and its results were highly
affected by the initial data distribution, which is, in our case, always random. We
can say that it was not able to learn and perform an action it should.

Figure 4.2: Classifier with 1 hidden layer

From the diagram 4.3a that represents the training and validation accuracy for
epochs, we can see that we run our experiment over the 500 epochs. The network

35



Chapter 4. Detection of pathological speech

was able to learn, and it achieved 70% accuracy on the validation data, approx-
imately around epoch number 70. From that point, its improvement was very
subtle, and it increased by about 5%.

Training accuracy is improving with each epoch, as we intentionally tried to
see the correlation between those two datasets (training and validation).

From the training and validation loss diagram 4.3b, we see almost the same
trend with one exception. It clearly shows that we intentionally overfitted the
network on the training data, with an increasing number of epochs. With the
networks starting to overfit, the actual performance dropped as the loss on the
validation data began to increase. Based on the graph, we can say that the network
performed at its peak after around 100 training epochs.

(a) Training and validation accuracy (b) Training and validation loss

Figure 4.3: Single layer classifier, training metrics

After we finished with the training process, we proceed to validate network
performance. We used a test dataset that contains the data only from the sub-
jects that the network never saw. From the confusion matrix diagram 4.4, we see
that the network learned how to recognize pathological and healthy samples. The
network achieved an accuracy of 74,23%.

4.3.2 Experimenting with network size

As we already had a base result, we wanted to know whether the network’s per-
formance can be improved by adding hidden layers and increasing the number
of neurons in them. We found that in general, the network achieved comparable
results. The accuracy ranged between 73,6% and 76,4%, although we found one
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Figure 4.4: Single layer classifier, confusion matrix

exception, which is described below. However, we were unable to test networks
with the five and more hidden layers within the classifier due to memory alloca-
tion issues.

The network that its diagram is shown in figure 4.5, extends the initial architec-
ture with one more layer with 16 hidden neurons. This layer was placed directly
between the first hidden layer and a dropout layer.

As we can see from the diagram 4.6a, we have run our experiment over a 100
training epochs. From the training and validation accuracy graph, the network
was a bit unstable during the first 50 epochs. However, it managed to stabilize
itself, and its performance ended up around 72% for validation data.

Training and validation loss diagram 4.6b shows that the loss decreased with
more epochs, and it reached about 0.57.

When validating the network’s performance on the test dataset, we saw that
the accuracy increased to 79,14%. From the confusion matrix presented in dia-
gram 4.7 we see, that the networkwas able to generalizedwell and achieved better
results on new data.

Increasing the network size further by adding more layers with more neurons
in them slowly degraded the network’s overall performance. We have seen that
the network with lots of trainable parameters was very prone to overfitting on
training data. Increasing the dropout did not help, as with less information, the
network was unable to learn anything.
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Figure 4.5: Classifier with 2 hidden layers

(a) Training and validation accuracy (b) Training and validation loss

Figure 4.6: Enhanced classifier with two layers, training metrics

A table 4.1 contains a summary of results of executed CNN single vowel ex-
periments.
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Figure 4.7: Enhanced classifier with two layers, confusion matrix

Accuracy Specificity Sensitivity
Single layer classifier 74,23% 0,763 0,723
Enhanced classifier with two layers 79,14% 0,775 0,807

Table 4.1: Table of results of executed CNN single vowel experiments

4.4 Multi-input model with one CNN per input

During our initial experiments, we have proven that the method we use is, in fact,
suitable for a given problem. Using transfer learning, we were able to reuse a
pre-trained VGG16 convolutional neural network and adapt it to our destination
problem, the classification of pathological voice. We achieved the adaptation to
the new problem by building a custom dense classifier learning from VGG’s out-
put. As a result, it output the probability of pathological and healthy classes.

The designed approach used in the first experiment had its limitations. The
biggest one was the minimal usage of the dataset. It only worked with one data
input at a time. Each subject in the Saarbruecken Voice Database has recorded
three audio files with different vowels and one sentence. The initial approach did
not utilize the potential of a given dataset.

For our next approach, we wanted to design an experiment that will extend
our initial effort by utilizing more data for each subject. Ideally, the network will
expect three inputs for each subject, corresponding to three recorded vowels. In
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theory, increased data diversity should help the network understand the more
abstract features, rather than limiting its knowledge to single vowel samples. A
network with multiple inputs should be able to utilize the given data better, learn
more from them, improve the generalization, and as a result, achieve better accu-
racy.

The network designed for this experiment expects three inputs, one for each
vowel, from a given subject. All inputs are in the form of spectrograms, converted
from audio recordings, as it was in the previous experiment. Each input is then
processed individually by three separate VGG16 networks. The output of all net-
works is then combined using the concatenation layer. After all, outputs are com-
bined, the flatten layer flattens the produced structure.

Wehave startedwith a networkwith one dense layer, butwe shortly discovered
that it was complicated to adjust. When we tried a hidden layer with a smaller
number of neurons, it was not able to learn at all. On the other hand, a hidden
layer with more neurons was very prone to overfit the training data, failing to
generalize correctly.

Therefore, we expanded our network with the second dense hidden layer and
re-ran our experiments. This time, it was much simpler to achieve comparable
results.

The first network that was successful in learning contained two hidden layers
with 32 and 16 neurons. It’s internal architecture diagram is displayed in figure
4.8. As the diagram describes, it contains three VGG16 networks. The concatena-
tion layer then combines the output of each VGG16 network preparing the data to
be processed by the custom classifier.

As we can see from the training metrics (figure 4.9), the validation accuracy
andvalidation losswere relatively stable during thewhole training process, except
for some local spikes. After about 30 epochs, the network began to overfit, which
is better visible from the loss diagram, but it can be observer also in the accuracy
diagram.

From the confusion diagram (figure 4.9), the network very prone to choos-
ing the pathological class, represented by the 0. This slight bias towards the one
class is a result of insufficient generalization. Besides the mentioned problem, the
network achieved an accuracy of 74,8%.

During our first step, we managed to find a network architecture that was able
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Figure 4.8: Classifier with 2 hidden layers with 32 and 16 neurons

(a) Training and validation accuracy (b) Training and validation loss

Figure 4.9: Multi-input, two dense layers with 32 and 16 neurons - training
metrics

to learn for a given task. It achieved comparable results, but it had trouble gener-
alizing, which resulted in a bias towards the one prediction class.

In order to allow the network to learn better, we have experimented with the
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Figure 4.10: Multi-input, two dense layers with 32 and 16 neurons - confusion
matrix

size of hidden layers. We had seen an improvement in accuracy when we in-
creased the number of hidden neurons in the first dense layer of the classifier to
the 64. The other components of the network’s architecture remained the same,
which is represented by the graph located in figure 4.11.

From the training metrics diagrams, located in figure 4.12, we can see that we
trained our networks for 150 epochs. We intentionally let the network to overfit on
the training data so that we can observe the dependency between the training and
the validation curves. From the training and validation accuracy diagram (figure
4.12a), we can see that the network reached its validation accuracy in about 30
epochs and it stayed on about 68% for the rest of the epochs. From the validation
loss diagram (figure 4.12b), it is more clear that the validation loss started to de-
crease from about 80 epochs. Until the end of the training process, the network
began to overfit on the training data heavily.

From the confusion matrix (figure 4.13), we can see that the network was able
to learn and generalize to the given data. Its predictions are balanced, although
there is a slight bias towards class 0, which represents the pathological class. The
network achieved an accuracy of 76,3%, which represents the 1,5% increase from
the previous network setup.

A table 4.2 contains a summary of results of executed multi-input model ex-
periments.
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Figure 4.11: Classifier with 2 hidden layers with 64 and 16 neurons

(a) Training and validation accuracy (b) Training and validation loss

Figure 4.12: Multi-input, two dense layers with 64 and 16 neurons - training
metrics
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Figure 4.13: Multi-input, two dense layers with 64 and 16 neurons - confusion
matrix

Accuracy Specificity Sensitivity
Multi-input model, two dense layers
with 32 and 16 neurons

74,82% 0,657 0,841

Multi-input model, two dense layers
with 64 and 16 neurons

76,26% 0,714 0,812

Table 4.2: Table of results of executed multi-input model experiments
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4.5 Encoding multiple inputs into image channels

From the experiments that we already executed, we saw that the network could
learn, understand, and classify, whether given samples contain a pathological or
healthy voice.

The initial approach, with the most straightforward setup, achieved the best
results so far. The average accuracy that networks are consistently reaching is
approximately around 73%. No matter what we tried, the accuracy only hardly
went above 75%, with one exception described in section 4.3.2.

In this another approach, we have designed a solution that is the combination
of two previousmethods. Wewanted to verifywhether the smaller network could
improve its accuracy by working with more data.

In our first experiment, described in section 4.3, we used a dataset that only
contained single vowel recordings. To ensure compatibility with input that is ex-
pected by the VGG16 network, we duplicatedmonochromatic spectrograms three
times, to simulate RGB input.

In the current experiment, we decided to use all three recorded vowels, as we
already did in section 4.5. During a data preprocessing stage, we group all inputs
for a given subject to create a single data input. This step is crucial as later, during
a data split process, each subject with all its data will be classified into training,
validation, or test group. All inputs are converted to spectrograms as it was in all
previous experiments.

The critical element that differentiates this new approach from the previous
one is the usage of the original simple network with only one VGG16 network ac-
cepting the input. Instead of duplicating the convolutional networks, we use a fact
that they accept the input image in the form of RGB colors. Instead of duplicating
the same monochromatic spectrogram taken from a single vowel recording, we
provide different spectrograms, each representing a particular vowel for a given
subject.

The network we have started with contains one dense layer and is described in
diagram 4.14.

From the diagram 4.15, we can see that the training and validation curves fol-
low each other very closely. Similiar training and validation curves mean that the
results achieved during the training process were very stable and consistent. We
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Figure 4.14: Classifier with 1 hidden layers with 128 neurons

can assume that the network was able to learn.

(a) Training and validation accuracy (b) Training and validation loss

Figure 4.15: Encodedmultiple inputs, one dense layer with 128 neurons - train-
ing metrics

The confusionmatrix diagram represented in figure 4.16 indicates the network
accuracy on test data, from previously unseen subjects. We see that the network
achieve accuracy of 72,67% and that it correctly learned to recognize both the
pathological and healthy subjects.
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Figure 4.16: Encoded multiple inputs, one dense layer with 128 neurons - con-
fusion matrix

After we executed our experiments, that have achieved comparable results,
we experimented with the classifier structure, as we already described in section
4.3. We found that the single dense layer network was more consistent than the
networkswithmultiple layers, and in general, itwas able to achieve a goodbalance
between overfitting and generalization. The network described in diagram 4.17
improved the results. Its hidden layer only contains 32 neurons, which reduced
the change of overfitting to the training and validation data. To compensate for
the reduced size, we lowered the dropout rate of 45%.

From the training metrics in figure 4.18, we see that the network slightly over-
fitted on the training data, but the validationmetrics were consistent. Consistency
is an indication that it achieved some improved generalization.

A good generalization can also be observed from the confusionmatrix in figure
4.19. The network achieved an accuracy of 75%, increasing the previous result by
more than 2%.

We also see, that the network is slightly biased towards the label 0, which repre-
sents the pathological class. In real-life usage, thismight be considered a benefit as
more people, that cannot be categorized will more likely be marked as unhealthy.
It will be able to attend a diagnostic process executed by amedical specialist. Hav-
ing amodel that tends to choose the pathological class in a state of uncertaintywill
minimize the percentage of patients without proper treatment.

When experimenting with multiple layers, the results we achieved were sim-
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Figure 4.17: Classifier with 2 hidden layers

(a) Training and validation accuracy (b) Training and validation loss

Figure 4.18: Encoded multiple inputs, one dense layer with 32 neurons - train-
ing metrics

ilar compared to single-layer classifiers. The best accuracy of 73.38% on test data
achieved a network with two dense layers, with 32 and 16 hidden neurons, re-
spectively. Dropout rates of 0.2 and 0.5 were located immediately after each dense
layer.
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Figure 4.19: Encoded multiple inputs, one dense layer with 32 neurons - con-
fusion matrix

A table 4.3 contains a summary of results of executed experiments with en-
coded multiple inputs.

Accuracy Specificity Sensitivity
Encoded multiple inputs, single
dense layer with 128 neurons

72,66% 0,686 0,768

Encoded multiple inputs, single
dense layer with 32 neurons

74,82% 0,686 0,812

Encoded multiple inputs, two dense
layers with 32 and 16 neurons

73,38% 0,829 0,638

Table 4.3: Table of results of executed experiments with encoded multiple in-
puts

4.6 Fine tuning model with multiple inputs encoded
into image channels

In our previous experiment, we used a simple one-input neural network with all
three vowels packed into the single input of the RGB spectrogram image. With a
better performant network, we achieved an accuracy of 75%. In this next experi-
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ment, we were interested in the question, whether we can improve those results
by fine-tuning the base VGG16 CNN network.

In order to only verify the fine-tuning process impact, we adopted the exact
same network structure, as it is described in section 4.5 in diagram 4.17.

The VGG16 network, used as a base layer, is trained to classify objects of more
than 1000 types from the source images. We have already proven that the net-
work can be reused to our destination task. However, the adaptation might be
hard, as the source and destination tasks and datasets are entirely different. The
idea behind the fine-tuning is to enable the base network to adapt to the desti-
nation task by enabling layers from the end of the CNN network to be adjusted
during a training process. We achieve this fine-tuning by setting the trainable
parameter of layers to be true. Under the hood, this unfreezes the layers which
mean, that their weights will be included during a weight update procedure as
a part of backpropagation and gradient descent algorithms. Fine-tuning the last
layers enables the model to better adapt to a destination problem, which, in our
case, is the detection of pathological speech.

First, we enabled only the last layer to be trainable, then two, up until the five
last layers. During the process, we observed the results and network behavior. In
general, we noticed an improved network’s ability to learn from the training data,
up until the point where it was almost impossible not to completely overfit the
network in the first few epochs.

We achieved the best resultswith the network, where the last three layers of the
CNN base network were enabled to be adjusted. As we can see from the training
metrics in figure 4.20, the network aggressively started to overfit on the training
data from about epoch 13.

We were also interested in achieved generalization on a separate test dataset.
The network’s accuracy was 76,98%, which is approximately a 2% increase from
the original network.

A table 4.4 contains a summary of results of executed experiment of fine tuned
model with encoded multiple inputs.
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(a) Training and validation accuracy (b) Training and validation loss

Figure 4.20: Fine tuned model - training metrics

Figure 4.21: Fine tuned model - confusion matrix

Accuracy Specificity Sensitivity
Fine tuned model 76,98% 0,714 0,826

Table 4.4: Table of results of executed experiment of fine tuned model with
encoded multiple inputs
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4.7 Comparison of different pre-trained CNNmodels

During all of our previous experiments, we have usedVGG16 as a feature extractor
for the pathological voice classification problem. We have seen that the network
was able to adapt and can be reused during transfer learning to help solve our des-
tination problem. In this new experiment, we are interested in comparing other
pre-trained convolutional neural networks as testing, whether they are suitable
(or easy to adapt) as feature extractors to our problem. We have decided to test
the multi-data approach, described in section 4.5. It is very suitable as it utilized
all three vowels as a single input for a particular subject.

Besides the VGG16, we’ve chosen to examine the ResNet50 [23], DenseNet121
[24] and NasMobileNet [25]. The classifiers on top of networks were set and
tuned individually for each base network, to maximize the achieved results. Data
preprocessing and evaluation methods used were the same during all experi-
ments. From all of the chosen networks, we have decided to use their smallest
versions with the least amount of parameters. This decision reduces the time and
complexity of combined models. All pre-trained weights were learned from the
ImageNet dataset.

The VGG16 network served us as a baselinewith the achieved accuracy of 75%,
on test data.

4.7.1 ResNet

We started with the ResNet50 [23] network, which was designed and developed
at Microsoft Research. As the name hints, it is based on the concept of Residual
Learning and Residual Network. A residual network, in comparison to its plain
counterpart, contains a shortcut connection. Having shortcut connections was
proven to be a good step forward to have deeper neural networks as it directly
fights against the vanishing gradient problem.

Compared to VGG16, the ResNet50 contains 5.4 times less trainable parame-
ters.

During a training process, we had a hard time trying to adapt the network to
our destination task. We were experimenting with several different classifiers on
top of the ResNet, but we were not able to come up with any good results. In all
experiments, the network was not able to learn and adapt. The network always
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has chosen a "side" and always predicted a single class.
After closer examination, we saw that the ResNet’s output data, used as an in-

put for a classifier, contained a considerable percentage of zeros. This information
lack in data is probably an indication that the network is tied to the destination
problem very closely. In order to use ResNet, it might be needed to allow fine-
tuning of some layers or simply train the network from scratch directly on the
pathological voice detection problem.

4.7.2 DenseNet

The next network we’ve decided to try was DenseNet121 [24]. Dense Convolu-
tional Network that was designed by the authors of a [24] paper connects each
layer to every other layer in a feed-forward way. This idea builds upon research
that shows that convolutional neural networks benefit from shorter connections
between layers, close to the input and close to the output.

From a size perspective, the DenseNet121 is more than five times deeper than
the VGG16, due to its nature. Other the other hand, it contains approximately 17
times less trainable parameters.

From the training metrics (fig. 4.22), we can observe similar behavior com-
pared to our previous experiments. Network’s accuracy and loss curves sug-
gest that the network was able to learn to differentiate between pathological and
healthy samples. Based on the small difference between training and validation
loss values, we can expect similar performance on unseen data, due to generaliza-
tion.

On the test set, the network achieved 71,22% accuracy. Compared to VGG16,
the accuracy is worse by more than 3%. Although, with proper fine-tuning and
more time spent, these results could probably be improved. According to achieved
results, it is safe to say that the network can be utilized for similar tasks.

4.7.3 NASNet

Our last approach was to verify the NASMobileNet [25] network. NASNet net-
works represent an attractive technical solution, different from other networks.
Their model architectures are learned directly from the dataset of interest. Al-
though the full potential of this network would be utilized when modeling the
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(a) Training and validation accuracy (b) Training and validation loss

Figure 4.22: DenseNet network multi-data approach - training metrics

Figure 4.23: DenseNet network multi-data approach - confusion matrix

NASNet network’s architecture directly fromour dataset, we used a transfer learn-
ing approach, so we are consistent with previous experiments.

NASMobileNet network is the smallest network from the list of networks we
have tried with just 5,326,716 trainable parameters.

As we can see from the training metrics (fig. 4.24), the network’s learning rate
was stable, and the accuracy and loss were improving up until the 120th epoch.
Based on the distances between training and validation accuracy and loss, we can
say that it was challenging for the network to find the right balance adapting to
training and validation data, which might be a good indication of a proper gener-
alization.
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(a) Training and validation accuracy (b) Training and validation loss

Figure 4.24: NASNet network multi-data approach - training metrics

Based on the confusion matrix (fig. 4.25), we see that the network was able to
learn to recognize healthy and pathological samples. The achieved performance
was 72,66%,which is about a 1,5% increase compared to theDenseNet experiment.

Figure 4.25: NASNet network multi-data approach - confusion matrix

Our experiments with NASNet indicates that it is the right candidate for fur-
ther research as it shows great potential with adapting to pathological voice de-
tection task.

A table 4.5 contains a summary of results of executed experiments of different
pre-trained CNN networks.

55



Chapter 4. Detection of pathological speech

Accuracy Specificity Sensitivity
DenseNet 71,22% 0,671 0,754
NASNet 72,66% 0,714 0,739

Table 4.5: Table of results of executed experiments of different pre-trainedCNN
networks

4.8 Model ensembles

So far, during our previous experiments, wehave examined several differentmeth-
ods and multiple models. The best accuracy so far was 79,14% achieved by our
simplest model shown, that the single vowel subset contains enough information.
We also tried to reuse other vowel subsets, with amulti-data experiment achieving
75% and 76,98% accuracy for fine-tuned model. It showed a possibility of using a
bigger data subset, however, not in a single model. Having to learn to understand
all vowels at once is a challenging task for a network.

In this next experiment, wewanted to combine the advantage of using a bigger
data subset with all vowels in it and using multiple simpler models. In order to
achieve that, we train three models separately on a particular vowel subset, and
then, for final prediction, we combine the partial answers to form a final predic-
tion.

The model ensemble is composed of the same networks used within the 4.3.2.
Each network is trained separately on a different data subset. First is trained on
an /a/ vowel, second on an /u/ vowel and third on an /i/ vowel.

We use the same training, validation, and test sets for all models. This step is
crucial in order to avoid mixing data and classifying already seen subjects.

For combining partial answers, we used a weighted average method. Based
on each model evaluation, we assign each model a prediction weight, calculated
based on the achieved validation loss.

wi =
(1− lossi)∑n
j=1 (1− lossj)

The final prediction pe is calculated as a weighted sum of probabilities pre-
dicted by each model p(i).
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pe =
n∑
i=1

wi ∗ p (i)

From the confusion matrix, presented in figure 4.26, we can see that the model
achieved an accuracy of 82,01%, which improves the best result, described in sec-
tion 4.3, by 2%.

Figure 4.26: Model ensembles - confusion matrix

Our results confirm the work presented in [9] paper, proving that, for Saar-
brueckenVoiceDatabase, increasing the subset improves the accuracy. Compared
to paper’s final result, where they used the fusion of 12models (three vowels, nat-
ural, low, high, and low-high-low intonation), therefore four times more data, we
achieved more than 2,5% increase in accuracy (compared to claimed 79,4%).

A table 4.6 contains a summary of results of executed experiments of model
ensembles.

Accuracy Specificity Sensitivity
Model ensembles 82,01% 0,843 0,797

Table 4.6: Table of results of executed experiments of model ensembles
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4.9 Summary

In this thesis, we designed multiple experiments to perform a pathological voice
detection task. Using the transfer learning technique, we reused state-of-the-art
image recognition deep neural networks, like VGG16, to extract information-rich
features from input images for our custom classifier. All experiments were exe-
cuted using the reduced sub-set of the Saarbruecken Voice Database, containing
only organic dysphonia diseases.

A table 4.7 contains an overview of results of all executed experiments.

Accuracy Specificity Sensitivity
VGG16 single vowel 79,14% 0,775 0,807
VGG16 multi-input 76,26% 0,714 0,812
VGG16 multi-data 74,82% 0,686 0,812
VGG16 fine-tuned multi-data 76,98% 0,714 0,826
DenseNet multi-data 71,22% 0,671 0,754
NASNet multi-data 72,66% 0,714 0,739
VGG16 model ensembles 82,01% 0,843 0,797

Table 4.7: Table of results of executed experiments

By using state-of-the-art convolutional neural networks with minimum pre-
processing, we confirmed that deep neural networks are self-sufficient and can
adapt to incoming data.

In comparison with [9], when they extracted acoustic and noise-related fea-
tures during a preprocessing phase, we achieved a better accuracy by 2,5% while
using four times fewer data.

Similar to their research, we have also seen that utilizingmultiple smallermod-
els as a formofmodel ensemble and using a bigger dataset (more vowels, multiple
voice modulations) significantly increases the overall network performance and
results.

Comparing our results with [1], which uses the same preprocessing method
and also utilizes CNNS, although they only use /a/ vowel samples, we achieved
a better accuracy by 5%, or 14% compared to an experiment that includes CDBN.
Those improvements represent a high potential of using pre-trained CNNS with
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Chapter 4. Detection of pathological speech

a transfer learning technique.
The next steps, based on results presented in this thesis can include: extend-

ing the model ensemble experiment to make use of all available data from SVD,
executing more in-depth experiments that include networks mentioned in section
4.7, study possible improvements of networks with multiple inputs, compared to
model ensembles, and execute experiments to see whether the pre-trained state-
of-the-art speech-to-text networks have a potential to be adapted using transfer
learning to a problem of detecting the pathological speech.
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5 Conclusion

In this thesis, we have explored the research field of detecting pathological voice
disorders. The classical examination is an expensive and challenging process that
required a trainedmedical professional. This fact directly affects the percentage of
the population that is lucky enough to get diagnosed and underwent proper treat-
ment. As it is not an ideal situation, researches started to investigate possibilities to
create an automatic, non-invasive, cheap, and simple solution that will work with
audio recordings. For this purpose, multiple datasets were created with samples
from healthy and pathological subjects. One of them being Saarbruecken Voice
Database, a collection of a voice recording of more than 2000 subjects.

Initial approaches used sophisticated feature extractors and relied on heavy
preprocessing in order to serve the polished, information-rich data to the classifier.
The acoustic analysis process serves the purpose, extractingmultiple acoustic and
noise-related features.

With the latest popularity and achievements of machine learning, more and
more approaches started tomakeuse of deep learning techniques. One of themost
significant advantages of deep learning is that it requiresminimumpreprocessing
and its ability to learn to understand complicated data relations. On the other
hand, deep learning requires a massive amount of data.

In this thesis, we analyzed the existing research in the field of pathological
voice detection. We come up with a method of reusing existing state-of-the-art
convolutional neural networks, that are typically used for image classification
problems, using transfer learning process. With transfer learning, we were able to
re-purpose the existing pre-trained CNN networks as a feature extractors for our
custom classifiers.

We designed several experiments using different base networks, different sub-
sets, andmultiple different network architectures in order to validate our assump-
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tions and verify them according to achieved results.
With our experiments, we have shown that the pre-trained image classification

CNN networks can be re-purposed using transfer learning to pathological voice
detection task. Networks we built during our experiments achieved results that
exceed the current reported results we found in published research.

During our work, we found out that the simpler networks with single vowels
as their inputs achieved better, more stable results compared to the more com-
plicated networks with multiple inputs. In order to improve achieved results, we
tested the possibility of using more extensive data subsets for each subject. We
observed that the simple model ensembles composed of one network per vowel
subset performed significantly better compared to bigger networks that dealt with
the data complexity internally.

In this thesis, we designed and tested a new approach to detecting the pres-
ence of pathology in the voice recording. We improved the existing results and
confirmed that the transfer learning approach is a viable technique that is worth
researching further for this field.
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